

RACIE 2019

Use of Open-Path UV DOAS as an Alternative Method to Meet Fence-Line Monitoring Provisions for Federal Benzene Monitoring Rule - A Case Study

Mark Wicking-Baird, Argos Scientific Africa Inc.

40 CFR 63.658

- The alternative method must be *validated*, according to Method 301 in appendix A of this part, or it must contain performance based *procedures* and indicators to ensure self-validation.
- The method detection limit must nominally be at least an order of magnitude below the action level, (*e.g.*, 0.9 μg/m3 benzene). The alternate test method must describe the *procedures* used to provide field verification of the detection limit.
- For path-average concentration open-path instruments, the physical path length of the measurement shall be no more than a passive sample footprint (the spacing that would be provided by the sorbent traps when following Method 325A). For example, if Method 325A requires spacing monitors A and B at 610 meters (2000 feet) apart, then the physical path length limit for the measurement at that portion of the fence line shall be no more than 610 meters (2000 feet).
- For range resolved open-path instrument or approach, the instrument or approach must be able to resolve an average concentration over each passive sampler footprint within the path length of the instrument.
- The alternative test method approach must have wind speed, direction and stability class of the same time resolution and within the footprint of the instrument.

ISO 17025

- General requirements for competence for testing and calibration laboratories
 - Covers:
 - Standard methods
 - Non-standard methods
 - Laboratory developed methods
 - Traceability to Primary Standard (NIST)
 - Execute method in a consistent manner
 - Continually improve

Method 301 – Field Validation

- 2 Options:
 - Use a known concentration of a analyte.
 - Compare candidate method against validated method.
- Determine Bias
- Determine Precision
- Determination of Robustness/Ruggedness
- MDL Determination

ETV and TO-16

- TO-16 (based on IR) gives methodology for Open-path measurements.
- ETV Program Test/QA Plan for Verification of Open-Path Monitors:
 - MDL
 - Linearity
 - Accuracy
 - Precision
 - Interferents

UV Method

- The system should be capable of making spectral absorption measurements along an open-air optical path.
- The system must be able to produce and save a single beam spectrum.
- The system must be able to operate at 0.14 nm wavenumber resolution over the range 185 to 300 nm.
- The system must be capable of acquiring data by co-adding individual, single beam scans in single scan increments. At a minimum, the system must be able to co-add single beam spectrums, so that a five-minute average can be obtained.
- The system must have a mechanism where a gas cell of known concentration can be installed in the UV path, so that the whole beam passes through the cell.

Traceability

- Create reference spectra using reference system.
- Fill sealed cells with gases for field spiking.
- Validate concentration of cell with reference system.
- Validate concentration of cell in the field.

Verification and Validation Model

Parameter		Method Acceptable	Site-specific Method Acceptable	Unacceptable
Relative Bias		<= 10%	Between 10% and 30%	> 30%
Precision		Relative Standard Deviation (RSD) <=20%		RSD > 20%
MDL		N/A	N/A	N/A
Accuracy		<= 15%		> 15%
Linearity		R ² >= 0.9		R ² < 0.9
Robustness Temperature		<= 1%		> 15%
Robustness S Strength	Signal	<= 15%		> 15%
Robustness Sa Time	ample	<= 15%		> 15%

Operational Model

- Every 2 weeks
 - A short cell with a known quantity of gas is inserted in the UV path.
- Every 3 months
 - The UV source is replaced and a short cell with a known quantity of gas is inserted in the UV path.
- Every Year
 - A full validation of the system is performed, according to the Argos Quality Assurance Project Plan Validation - Quality Assurance Plan for Fenceline UV DOAS System (FLM-QLT-PLN-001).

Results

Parameter	Value	Status
Relative Bias	2% over 5 systems	Method Acceptable
Precision	1.9% over 5 systems	Method Acceptable
MDL	0.475	> 0.09
Accuracy	5%	Method Acceptable
Linearity	0.92	Method Acceptable
Robustness Temperature	3% from 9 to 45 deg C	Method Acceptable
Robustness Signal Strength	0.74%	Method Acceptable
Robustness Sample Time	10% from 0.5 min to 30 min	Method Acceptable

Precision

Data Point	Benzene (ppb)	Data Point	Benzene (ppb)
1	55.54	14	58.33
2	55.57	15	58.89
3	56.16	16	59.22
4	56.52	17	58.98
5	57.37	18	58.89
6	57.59	19	59.4
7	57.28	20	59.53
8	58.36	21	59.12
9	58.07	22	59.87
10	58.00	23	60.03
11	58.62	24	60.13
12	58.76	25	60.21
13	58.24		
Average (ppb)	58.35		
Std. Dev.	1.35		
	2 21		

Signal Robustness

% of Max Signal	Measured Value (ppb)
79.1	15.01
67.1	15.32
45.6	15.29
29.5	15.34
14.4	15.35
6.9	15.36
3.5	15.26
1.3	15.26

Areas of Improvement

- Proficiency Testing
- More frequent MDL
- Accreditation Process
- Lower Detection Limits
- Increase trust in Data

