

MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY

Inverse Modeling of Episodic Measurements for Conventional and Real Time

Applications

Jay Olaguer Assistant Director Air Quality Division

Introduction

- Ambient air measurements based on optical, chemical ionization, or other contemporary monitoring techniques make real-time observation a reality.
- These measurements can now be interpreted either off-line or in real time using inverse methods for source attribution and emissions quantification.
- This presentation demonstrates examples of inverse modeling of conventional and real-time measurements based on either
 Gaussian dispersion models or 3D microscale grid models for pollutant transport and/or chemistry.

Example 1: Ethylene Oxide from a Sterilization Facility

- Ethylene oxide (EtO) is a global commercial chemical (~20 Mt/yr) that is often used to sterilize medical equipment.
- EtO is a known carcinogen; it can cause breast and blood cancers. Michigan's Initial Risk Screening Level (IRSL) is 0.0002 μg/m³ (annual average) corresponding to a cancer risk of 1-in-a-million.
- Largest medical sterilization facility in Michigan reported fugitive emissions of EtO, whose AERMOD-simulated annual average impacts at nearby residences were up to 0.3 μg/m³.
- EGLE (then known as MDEQ) conducted 24-hr Summa canister sampling at 16 sites around facility followed by TO-15 analysis (refined to eliminate interference from trans-2-butene).

Ethylene Oxide Phase II Sampling MARCH 27 - 28, 2019 EGLE

Inverse Modeling Method: Steady State Gaussian Plume

Solve for *B* and *Q* using linear regression (for positive values of *x* only):

where:

x = distance from facility emission point along average wind direction (= 204°) *y* = perpendicular distance from x-axis

U = average wind speed (= 4.47 m/s)

 σ_v = horizontal urban dispersion parameter for neutral stability (Briggs, 1973)

 σ_z = vertical urban dispersion parameter for neutral stability (Briggs, 1973)

Inferred Ethylene Oxide Parameters (based on 12 downwind sites)

- Inferred EtO emission rate: 594 lbs/yr
- Reported emissions based on indoor GC measurements and mass balance: 420 lbs/yr
- Inferred EtO background: 0.247 μg/m³
- Average upwind measurement: 0.177 μg/m³
- Background EtO concentration in Chicago measured by Ramboll (2019): 0.24 μg/m³

Example 2: Refinery Emissions of Reactive Formaldehyde

- **Primary formaldehyde** may be more important in urban ozone formation than originally thought due to its ability to generate an initial pool of radicals (Olaguer et al., 2009, 2014).
- The Study of Houston Atmospheric Radical Precursors (SHARP) took place in 2009. It brought advanced remote sensing and mobile monitoring techniques to measure primary formaldehyde.
- Imaging Differential Optical Absorption Spectroscopy (I-DOAS) and mobile Quantum Cascade Laser (QCL) measurements were made outside the fence line of the third largest refinery in the U.S.
- An advanced **3D microscale Eulerian chemical transport model** was later developed to serve as a data interpretation engine for realtime measurements from SHARP and other field campaigns. (Olaguer, 2011; 2012a,b; 2013; Olaguer et al., 2013; 2016a,b; 2017)

High Resolution 3D Eulerian Air Quality Model

- Neighborhood scale 3D Eulerian grid model with its own chemical mechanism for nearsource applications (48 gas phase reactions).
- Very fine resolution (20 s, 200 m horizontal) for simulating highly reactive species.
- Model has both forward and adjoint modes.
- Uses calculus of variations to perform 4D data assimilation and inverse modeling.

High Resolution Urban Wind Model

QUIC model used to simulate wind based on 3D LIDAR building morphology

Formaldehyde Source Attribution for a Texas City Refinery

- Winds from QUIC model
- Inverse modeling based on mobile QCL measurements
- Emissions attributed primarily to fluidized cat cracking and desulfurization operations
- Formaldehyde emissions agree with I-DOAS remote sensing measurements (18 kg/hr)

Olaguer et al. (2013), J. Geophys. Res.-Atmos., 118, 11,317–11,326.

Example 3: Underground Pipeline Leaks of Benzene

- Benzene and other Toxics Exposure Study (BEE-TEX) occurred during February 2015 in the Houston Ship Channel.
- Three mobile labs equipped with Proton Transfer Reaction—Mass Spectrometry (PTR-MS), plus GPS and meteorological measurements.
- Real time source attribution and emissions quantification (within 1 hr of measurements) based on high-resolution inverse modeling with a 3D microscale Eulerian grid transport model.

Pipeline Network, Point Sources, and Mobile Lab Measurements of Benzene in Galena Park, Texas

egle

BEE-TEX Mobile PTR-MS Measurements

EGLE

Feb 19, 2015 Galena Park Benzene Total Domain Emissions (kg/hr)

Time Period	Point Sources	Pipelines	Total Emissions
Afternoon	16.43	34.73	51.16
Evening	5.59	10.69	16.29
2011 NEI	8.27	0	8.27

Olaguer et al. (2016), J. Air Waste Manage. Assoc., 66, 164–172.

Current and Future Work at EGLE

- New Python-scripted Gaussian plume inverse model with complex terrain capability for initial application to EPA mobile cavity ringdown spectroscopy measurements of CH₄ and H₂S at landfills.
- Inverse modeling of fugitive emissions from underground pipelines (natural gas, crude oil, refined product) in the Detroit metropolitan area based on mobile real-time measurements.
- Incorporation of inverse modeling results into very fine resolution air quality model runs for ozone attainment demonstration in the Southeast Michigan nonattainment area.

