COMBINING MODELING AND MEASUREMENT ECHNEQUES

Shari Beth Libicki, PhD November 7, 2019

RACIE

RAMBOLL Bright ideas. Sustainable chang

FACILITY SCALE

EPA STATE AND TRIBAL GRANT

- The City of Richmond along with the Bay Area Air Quality Management District (BAAQMD) established a three-year community air monitoring program to monitor emissions from the Chevron Refinery.
- As a part of the United States Environmental Protection Agency (US EPA) State and Tribal Grant (STAG), Ramboll will apply modeling and numerical analysis techniques to determine whether the complex dataset can be used to infer or estimate emissions from the Refinery.
- The goals of the project are:
 - Make use of a rich data set that has previously been under-utilized
 - Evaluate covariation within all pollutants measured to allow a reduction in parameters measured.
 - Evaluate whether a combination of data analytics and dispersion modeling with US EPA's AERMOD model can determine distinct sources of emissions from the refinery to use monitoring to measure emissions

A RICH DATASET?

- Three open-path fenceline monitors and three multi pollutant community monitors (CMS)
- Measures Hazardous Air Pollutants, Criteria Air Pollutants, Hydrocarbons including Benzene, Hydrogen Sulfide (H₂S), Sulfur Dioxide (SO₂), Volatile Organic Carbon and many more.
- Chevron operates GLMs by permit
- How can the data be better used?

DATA COMPLETENESS

Dataset	Field	Atchison Village	North Richmond	Point Richmond
CMS	Benzene	3%	2%	2%
	Toluene	19%	12%	12%
	o-Xylene	13%	13%	12%
	m-Xylene	6%	2%	2%
	Ethylbenzene	0.6%	0.2%	0.2%
	Hexane	30%	20%	19%
	3-methylpentane	6%	2%	2%
	1,2,3-trimethylbenzene	0.07%	0.03%	0.03%
	2,2,4-trimethylpentane	3%	1%	1%
	H2S	21%	21%	21%
	NH3	87%	86%	86%
	BC	99%	99%	96%
	PM	56%	59%	62%
TDL	H2S	0%	0%	0.00%
UV	SO2	3%	6%	4%

- "Completeness" only includes data above detection limit.
- Only pollutants such as Ammonia, Black Carbon (BC) and Particulate Matter (PM) have a high degree of completeness at the community monitors, but several confounding sources of BC and PM in the area.

ONLY ONE POLLUTANT CONTAINED ENOUGH VARIABILITY

- Chevron provided ground-level measurements (GLM) of H₂S and SO₂.
- Air District provided daily emissions data as measured in the Continuous Emissions Monitoring System (CEMS).
 - GLM and CEMS data are more complete for 2016/2017 compared to fence-line/CMS.

						-				-				-			
Dataset	Field	FCC			SRU Train 1			SRU Train 2				SRU Train 3					
		2014	2015	2016	2017	2014	2015	2016	2017	2014	2015	2016	2017	2014	2015	2016	2017
Chevron –	SO2 1 Hr Avg (ppm)	N/A	N/A	99%	99%	N/A	N/A	86%	94%	N/A	N/A	89%	93%	N/A	N/A	77%	88%
CEMS	SO2 Emissions Rate	N/A	N/A	N/A	99%	N/A	N/A	N/A	100%	N/A	N/A	N/A	100%	N/A	N/A	N/A	100%
		Golden Gate			Gertrude			Castro				San Pablo					
Dataset	Field	2014	2015	2016	2017	2014	2015	2016	2017	2014	2015	2016	2017	2014	2015	2016	2017
Chevron - GLM	SO2 1 Hr Avg (ppm)	40%	97%	99%	88%	42%	81%	87%	96%	42%	100%	100%	100%	33%	91%	91%	94%

- SO₂ offers most complete dataset; few confounding sources of SO₂ in the area including a sulfuric acid manufacturing plant and the Richmond terminal.
- Using supervised machine learning algorithm to predict SO₂ emissions from the refinery on an hourly basis based on features, including but not limited to meteorological data, **dispersion coefficients** and monitoring data.

CITY SCALE

BACKGROUND

AB617

RAMBOLL

- Funds community level air measurement, education, and emissions reductions
- Targets disadvantaged communities

AB617 Funded Project in Richmond, CA ("Air Rangers")

- Fill PM and NO₂ monitoring gaps
- Understand the refinery's impact
- Communicate actionable data to the public in nearrealtime
- Facilitate healthy outdoor recreation
- Local work force development for disadvantaged youth

AIR RANGERS COMMUNITY AIR PROTECTION GRANT

Action Plan

Team of City, NGOs, scientists

Site **50** PM & NO₂ sensors; take **70** toxic metals samples

Communicate hyper-local air quality to the public, hourly

Hourly hotspot ID and source attribution

SENSOR NETWORK IN RICHMOND

- Network of up to 50 low-cost Clarity sensors
- Pollutants: PM_{2.5}, PM₁₀, and NO₂
- Sited in greenways, parks, and near high traffic roadways, and industrial centers

Groundwork Richmond Air Rangers

RAMBOLL

COMMUNICATING RESULTS

Web/phone app for Richmond is being developed

WHERE CAN DATA-DRIVEN MODELS ADD VALUE THAT FENCELINE SYSTEMS MAY MISS?

• Spatial variation affecting people where they live and spend time

SHAIR OUTPUT WILL BE USED BY STAKEHOLDERS

Groundwork Richmond

Targeted tree planting as an air pollution intervention

City of Richmond

- Integrate hourly Shair output into the City's web data dashboard
- Investigate air quality data-driven land use planning activities
- Communicate information to the public in near-realtime

Richmond citizens

- Engage with their environment
- Plan healthier outdoor activities
- Take precautionary actions during localized pollution events

Richmond-San Pablo Community Air Monitoring Steering Committee

- Identify major emissions sources
- Inform their official Community Emissions Reduction Plan (December 2020)

Source Allocation?

HOW CAN SOURCE ALLOCATION BE MOST EFFECTIVELY USED?

- Continuous feedback and comparison of model and measurement every hour helps us learn where model and measurement consistently disagree, pinpointing hotspots we don't know exist or errors in our emissions inventory so we can improve source allocation over time
- Used by:
 - Community?
 - City?
 - District?

Shari Beth Libicki, PhD + the Shair Team slibicki@Ramboll.com

RAMBULL Bright ideas. Sustainable change.