Forecasting Wildfire Smoke PM2.5 using the AIRPACT5 Air-Quality Forecasting System: recent experience, emerging approaches and a near-term application.

Joe Vaughan1, Farren Herron-Thorpe2, Mahshid Etesamifard1, Nicole June3,
Kai Fan1, Ranil Dhammapala2, Yunha Lee1 and Brian Lamb1.

1: Laboratory for Atmospheric Research, Civil and Environmental Engineering, Washington State University, Pullman, WA
2: Washington Department of Ecology, Lacey, WA
3: Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA

Refinery and Chemical Industry Emissions Symposium
November 7, 2019
UC Davis Conference Center
Air-quality Indicator Reporting for Public Access and Community Tracking: AIRPACT

• Forecasting AQ in WA state since 2001
• AIRPACT5 forecasts highly resolved AQ:
 • Nightly run forecasts the next two days (48 hours)
 • Spatial scale of 4-km grid covers WA, ID, & OR.
 • Criteria pollutants: PM2.5, O3, CO, NO2, SO2, & related precursors and products
• Supported by NW-AIRQUEST consortium: EPA, WA Ecology, OR DEQ, ID DEQ, Local & Tribal agencies, Env. CAN.
Tour of AIRPACT5 at: http://lar.wsu.edu/airpact/

- Forecasts (Imagery)
- Monitoring Sites
- Performance Charts/
- Boundary Conditions
- Curtain Plots
Tour of AIRPACT 5 at: http://lar.wsu.edu/airpact/

- Forecasts (see Imagery)
- Monitoring Sites
- Performance Charts
- Boundary Conditions
- Curtain Plots
Tour of AIRPACT5 at: http://lar.wsu.edu/airpact/

- Forecasts (see Imagery)
- Monitoring Sites
- Performance Charts/Stats
Tour of AIRPACT5 at: http://lar.wsu.edu/airpact/

- Forecasts (see Imagery)
- Monitoring Sites
- Performance Charts/Stats
- Boundary Conditions
- Curtain Plots

10 timestep animation, every 6 hours
Tour of AIRPACT5 at: http://lar.wsu.edu/airpact/

- Forecasts (see Imagery)
- Monitoring Sites
- Performance Charts/Stats
- Boundary Conditions
- Curtain Plots
Anthropogenic emissions based on the 2011 NEI
- Updates to major point sources (2014)
- Reductions in Residential Wood Combustion (Urban Areas)
- 2014 MOVES and NONROAD
 - MOVES static lookup tables:
 - increases processing speed
 - speeds forecast completion
 - but is year-specific.
- Area Fugitive Dust
 only used on ‘dry-side’,
east of the Cascades

Fire emissions - modified BlueSky approach
- Rx Fire, Ag Fire, and WF from NEI are not used.

Biogenic emissions - MEGAN 2.1
- Parallel mode (increases speed)
- MODIS Land Cover & Land Use

Canada Emissions from 2010
AIRPACT Anthropogenic Emissions Update

EPA 2014 NEI v2 used as basis for AIRPACT-6 Emissions Inventory
• Updates to Point Sources by states (2017)
• MOVES and NONROAD projected to 2019
 • Large reductions in vehicle CO/NOx/VOCs and Road Dust
 • Large reductions in ship SO2 in SECA

Transition from SMOKE v3.5.1 to SMOKE v4.5 in progress
• Requires (as distributed) Intel nodes
• Fixed width format no longer used for inputs or profiles
• New version of SMOKE-MOVES (includes hotelling and new SCCs)
• Continuing to use CB-05 speciation; CB-06 not supported yet in current forecasting implementation of SMOKE-MOVES (i.e. in static lookup tables)
SMARTFIRE-2 is queried at 10 pm PDT for USA fire locations and sizes
 - NOAA HMS fire-detects and Infrared fire perimeters from GEOMAC
 - “Spin-up” (24-hrs) look back and “persistence” assumption used for
 - Fire locations detected 1-2 days prior to the forecast date.
 - All fire acres divided by 3 to correct for HMS double counting.
 - Rx fire assumed if October – June, and treated as pile burn.
 - Rx Fires not fuel specific (assumes ~100 tons fuel burned per HMS detect)
 - Avoids very large over-estimates in cold months

FCCS fuels map from BlueSky 3.5.1 is queried
 - Fire emissions and heat flux looked up from BlueSky sensitivity analysis
 - Emissions scale linearly
 - Heat flux scales non-linearly
 - Allows fire emissions to be processed in less than 5 minutes, even when there are 1000s of fire locations

Canadian fire emissions come directly from BlueSky Canada
 - BlueSky Canada does not assume large acreage per HMS detect, so no Rx fire replacement or size adjustment is needed.
AIRPACT-5 Fire Plume Rise

- Original BlueSky approach specified Plume Top, Plume Bottom, and Smoldering Fraction based on Briggs (no PBL considered)
 - Used until 2014
- Improved SMOKE approach used WRF Planetary Boundary Layer height (meters a.g.l) to constrain plume rise
 - Used until 2018
- Note: SMARTFIRE aggregates HMS hot-spots locations, which directly impacts BlueSky heat and plume rise calculation.
 - Plume rise is modeled individually for each aggregate location.
 - Total heat release is used rather than heat/area. This is too much!
AIRPACT-5 Fire Plume Rise Update

New Modified Plume Rise Approach developed by Wei Zhang (IDEQ) addresses plume rise problems in the SMOKE approach:

1. Smoldering fraction is too low:
 Change implements new smoldering fraction by plume class based on the literature (WRAP/ DEASCO3)
 - SMOKE calculates smoldering fraction using area burned.
 - New “virtual fire area” provided to SMOKE

2. Plume rise was too high for large fires:
 Change assumes multiple fronts for big fires and reduces the heat flux which drives plume rise
 - SMOKE calculates plume rise as a function of heat
 - New lower “virtual heat” provided to SMOKE
Artificial Intelligence / Machine Learning for improved forecasts:

Random Forest and Multiple Linear Regression Daily Max 8-hr Ozone. (Fan, Dhammapala, & Lee)

- Predicts high ozone events at Kennewick, WA.
- Models used:
 - multiple linear regression,
 - generalized additive model, and
 - random forest model

WRF met in Kennewick (PBL, P, Temp, U, V, RH) + month + weekday + hour + previous day 8-hr avg. O₃

Tri-Cities Ozone Forecast is now featured on the AIRPACT5 Home Page!
Artificial Intelligence / Machine Learning for improved forecasts:

Kalman Filter Bias Correction for 24-hr (average) PM2.5 forecast, in development.

• Compute Kalman Filter Bias at each monitoring site for 24-hr PM2.5 using preceding four days, and Apply Correction:
 • Grid-applied method:
 • Interpolate the Bias over grid w/ cubic-spline and correct gridded forecast.
 • Site-applied method:
 • Apply Bias as correction to forecast at monitor grid-cell, and interpolate w/ cubic-spline.

Grid-Applied for 20170903.

Site-Applied for 20170903.
CENSE: CARDIOPULMONARY EVENTS FROM SMOKE ESTIMATOR

• CRFs: Concentration Response Functions for 7 conditions (asthma, COPD, Myocardial Infarction, etc.) from WA ECY Matt Kadlec’s review of biomass burning smoke PM$_{2.5}$ epidemiological literature.

• Relative Risk [excess %]: $RR = F(\text{cardiopulmonary cond.}, \text{age}, 24$-hr PM$_{2.5}$)

• Relative Risk map = $F(\text{AP5 bias-corrected PM2.5 forecast map}, RR(...))$

• Smart Phone App & website to serve Relative Risk forecast for users by: latitude/longitude, smart phone location, or user’s zipcode.

• Covered under HIPPA?

• Funding:
 • Joint Fire Science Program,
 • Amazon Catalyst-WSU,
 • AI for Earth Microsoft Azure Compute Grant.

• In progress...
Thank you!

Questions?