BTEX Observations by UV Absorption Spectroscopy: From Research to Monitoring

Jochen Stutz

Department of Atmospheric and Oceanic Sciences University of California Los Angeles, Los Angeles, CA

Motivation

South Coast

Health Effects of Benzene (EPA) <u>Acute</u>: Neurological effects, irritation of the eye, skin and respiratory tract <u>Chronic</u>: Blood disorders (reduced number of red blood cells and aplastic anemia), cancer

RULE 1180. REFINERY FENCELINE AND COMMUNITY AIR MONITORING

(a) Purpose

The purpose of this rule is to require real-time fenceline air monitoring systems

Refinery Emergency Air Monitoring Assessment Report

Objective 2: Evaluation of Air Monitoring Capabilities, Gaps, and Potential Enhancements

Recommendation:

R-A11 CARB and CAPCOA should support demonstration and implementation of ORS and spectral flux technology projects in SCAQMD and elsewhere as these technologies are validated for refinery air monitoring applications.

UV Absorption Spectroscopy

Absorption and emission are a <u>specific property of</u> a molecule

Beer's Law

$$\mathbf{I}(\lambda) = \mathbf{I}_{\mathbf{0}}(\lambda) \times \mathbf{e}^{-\boldsymbol{\sigma} \times \mathbf{C} \times \mathbf{L}}$$

Absorption Cross Section $\sigma(\lambda)$

Absorptions by Aromatic Hydrocarbons

- Rayleigh (air) and Mie (particle) scattering
- Strong (saturated) narrow O₂ absorptions
- Poorly defined O₂O₂ and O₂N₂ collisional complex absorptions
- Strong temperature dependent O₃ absorptions
- Absorptions by aromatics are unique to each compound but overlap
- Turbulence
- Limited absorption path length due to Rayleigh and Mie scattering and O₃ absorptions

Differential Optical Absorption Spectroscopy

$$\underline{\mathbf{I}(\lambda)} = \underline{\mathbf{I}'_0(\lambda)} \cdot \exp\left(-\underline{\mathbf{C}} \cdot \underline{\sigma'(\lambda)} \cdot \underline{\mathbf{L}}\right)$$

Modified Beer's Law

<u>C: Trace gas concentration</u> can be directly calculated based on <u>path-length</u>, and the <u>physical</u> constant of the absorption cross section.

DOAS: Separation of broad and narrow absorption features: Only narrow-band depth is measured $I(\mathcal{S})$ $\sigma(\lambda) \ [cm^2]$ σ

 σ^{B}

Data Retrieval Approach

• Least squares fit of function F to $ln(I/I_0)$:

$$\mathbf{F}(\mathbf{i}) = \mathbf{P}_{\mathbf{r}}(\mathbf{i}) + \sum_{j=1}^{m} \mathbf{a}_{j} \times \mathbf{S}_{j}(\mathbf{i})$$

- P_i polynomial for broad structures S_j, reference spectra a_i scaling factors:
- Reference spectra calculated from literature high-resolution absorption cross sections.
- Determination of concentration and uncertainties from retrieval.

$$\operatorname{Conc}_{j} = a_{j} / (\sigma_{j} \times L).$$

Absolute Retrieval

- All reference spectra are calculated from literature cross sections
- Lamp measured at the source
- No calibration needed

Relative Retrieval

- Use of atmospheric reference
- Trace gas reference spectra are calculated from literature cross sections
- Calibration often performed

Simulation in high spectral resolution ($\Delta\lambda$ =0.001nm)

$$I(\lambda) = I_{Lamp}(\lambda) \cdot T_{instrument} \cdot exp\left[-\left(\sigma_{Rayleigh}(\lambda) \cdot C_{air} + \sigma_{Mie}(\lambda) \cdot N_{aerosol} + \sum \sigma_{i}(\lambda) \cdot C_{i}\right) \cdot L\right] + Noise(\lambda)$$

All parameters, except the benzene mixing ratio, randomly varied within atmospheric conditions \rightarrow 1000 different atmospheric spectra

Degradation to spectrometer resolution

$$\mathbf{I}^*(\lambda, \mathbf{L}) = \mathbf{I}(\lambda, \mathbf{L}) * \mathbf{H} = \int \mathbf{I}(\lambda - \lambda', \mathbf{L}) \times H(\lambda') d\lambda'$$

Noise added as photon noise spectrum with random number generation

Absolute Retrieval with O ₃ temperature correction		
Mean:	4.98 ppb	
StdDev:	0.12 ppb	
meanError:	0.08 ppb (normally reported as 0.16ppb)	

Relative retrieval with O₃ temperature correction: Reference with 0.1 ppb benzene

Mean:	4.96 ppb
StdDev:	0.23 ppb
meanError:	0.12 ppb

Relative retrieval without O₃ temperature correction: Reference with 0.1 ppb benzene

Mean:	4.89 ppb
StdDev:	0.16ppb
meanError:	0.15ppb

Theoretical Retrieval Dependencies

ASS

$\frac{\text{Small atmospheric transmissivity} \rightarrow}{\text{impact on detection limit}}$

- Up to 1.5 km total path length \rightarrow little variability in sensitivity
- Strongly dependent on ozone and visibility

<u>O₂ absorptions are non-linear at low</u> <u>spectral resolution</u>

- Introduction of spectral artifacts in analysis.
- Dependence of benzene M.R. and errors on temperature and pressure.
- Corrected in absolute retrievals but not in relative retrievals

Theoretical Retrieval Dependencies

- Uncorrected temperature dependence introduces biases in benzene retrieval and increases error
- Include cross sections with two different temperatures in retrieval

Spectrometer Straylight

- Suppression of unmeasured wavelength by spectrometers imperfect.
- Produces a background (socket) intensity in the spectrometer

 $\mathbf{I}(\lambda) = \mathbf{I}_{\text{stray}}(\lambda) + \mathbf{I}_{\mathbf{0}}(\lambda) \times \mathbf{e}^{-\boldsymbol{\sigma} \times \mathbf{C} \times \mathbf{L}}$

- Problems in the data retrieval
- For Xe-arc lamps (most common light source) 95-99% of incoming light needs to be suppressed

Solution

- Better spectrometer (\$\$\$)
- Use filters
- Use different light source
- Correct during of after retrieval (difficult)

Absolute Retrieval with O ₃ temperature correction		
Mean:	4.74 ppb	
StdDev:	0.44 ppb	
meanError:	0.16 ppb (normally reported as 0.32ppb)	

Relative retrieval with O₃ temperature correction: Reference with 0.1 ppb benzene

Mean:	4.35 ppb
StdDev:	0.26 ppb
meanError:	0.10 ppb

Relative retrieval without O₃ temperature correction: Reference with 0.1 ppb benzene

Mean:	4.31 ppb
StdDev:	0.23 ppb
meanError:	0.11 ppb

UCLA LP-DOAS instruments

- Fiber telescope setup with wide and accurate rotation capability.
- Dual LED light source to reduce spectrometer straylight
- Research quality spectrometer/detector.
- Fully automated with near-realtime analysis capability

Spectral Analysis of Field Data

• 33 ± 0.9 ppb of benzene (270m path)

- 31.4 ± 0.8 ppb of toluene (770m path)
- 11.0 ± 0.6 ppb of m-xylene (770m path)
- 4.9 ± 0.2 ppb of p-xylene (770m path)

Stutz et al., 2016

Fenceline Application: Benzene

- Benzene correlated with wind direction
 - Atmospheric background ~0.8ppb
 - Facility direction ~2.6ppb
- Temporal resolution ~1min
- Fully automated operation for ~3 months

Histogram of 3 months (53400) of observations

Average error: 0.3 ppb

Average detection limit $\sim 0.4 - 0.6$ ppb

Stutz et al., 2016

Instrument Performance during BEE-TEX in Houston

Toluene and benzene levels compare well with Univ. Houston PTR-Mass Spectrometer

Detection limits calculated from retrieval error for each measurement

Species	Average detection limit, 770m distance (ppb)
benzene	0.31
toluene	0.60
m-xylene	0.58
p-xylene	0.36

The BEE-TEX Experiment in Houston

- February 2015
- Manchester Neighborhood in the Houston Ship Channel.

BEE-TEX CAT-DOAS

Observations

- From 2/9 2/28/15
- Two LP-DOAS instruments
- 7 light paths from 270 -1203m length

	Reflector Location	Distance (m)
Manchester St. LP-DOAS		
M1	LP-DOAS scaffolding tower at Hartman Park	770
M2	Southern end of IH610 bridge	1203
M3	Telescopic tower south of LP-DOAS	270
Hartman Park LP-DOAS		
H1	IH610 bridge	513
H2	Southern end of IH610 bridge	526
H3	Telescopic tower at the exit ramp of the IH bridge	689
H4	Telescopic tower near the Central St. bridge	740

Analysis / 2D Reconstructions

- Real-time computer aided tomography (CAT) retrievals of 2D concentration fields
- Re-analysis using high-resolution HARC 3D Eulerian air quality model (QUIC-based) with adjoint 4Dvar data assimilation (Olaguer et al., 2017)

Toluene Plume 2/19 Reconstruction

LP-DOAS reconstruction agrees well with reconstruction from mobile lab observations

Olaguer et al., 2017

Reconstruction 2/19 4:00 am

Mobile Lab-based Reconstruction

What is next? The Optical Tent

- Bring 2D sensing capability into a petrochemical facility
- Measurement of benzene, toluene, xylene's, etc.
- Provide near-realtime observations to alert facility of emission events.
- Provide guidance on location of emissions

- Two LP-DOAS instruments + 10-12 light paths cover entire facility.
- BTEX detection limits similar to previous field deployments ~0.5 1 ppb.
- Integration with fenceline systems and facility operation.

Optical Tent in Refinery

ASS

Conclusions

- State-of-the-art LP-DOAS systems provide reliable observations of benzene, toluene, xylene's
 - Theoretical benzene detection limits around 0.25 0.5 ppb
 - Practical detection limits ~ 0.3 0.6 ppb for benzene, and 0.3 1 ppb for other BTEX compounds
 - UCLA LP-DOAS compares well with other methods for benzene and toluene
- 2D CAT-DOAS approach successfully demonstrated during the BEE-TEX experiment in Houston.
 - Successful BTX measurements on light paths longer than 1.5 km.
 - Reconstruction of concentrations fields (near-realtime and re-analysis)
 - Identification of emission sources
- Optical tent will bring 2D capability inside facilities.
 - Alarm system to warn facility operators of release events
 - Provide guidance for location of emission source

Funding and support

Fish and Wildlife Service of the U.S. Department of the Interior through Harris County, Texas

Houston Advanced Research Center

South Coast Air Quality Management District

