College of Engineering LAMAR UNIVERSITY

Artificial Intelligence Models for the Predictive Analysis of Flaring Performance

Helen H. Lou^{1*}, Daniel Chen¹, Xianchang Li², Christopher Martin³, Anan Wang¹, Huilong Gai¹, Yueqing Li⁴

¹Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, Texas ²Department of Mechanical Engineering, Lamar University ³Department of Chemistry, Lamar University ⁴Department of Industrial Engineering, Lamar University

MEMBER THE TEXAS STATE UNIVERSITY SYSTEM*

Flares

- A safety device to remove potentially explosive vapor clouds from the facility
- Originally not used as environmental control devices
- Flaring
 - Lost raw material
 - Lost product
 - Lost fuel gas
 - Lost \$\$\$
 - Emissions:
 - Unburned hydrocarbons, CO, VOCs
 - Soot
 - Nox, SO₂ ...

Refinery Sector Rule (RSR) – MACT CC and UUU

- Compliance Date: January 30, 2019
- Performance Indicators
 - Destruction Efficiency/Combustion Efficiency (DRE/CE): 98%/96.5%
 - No visible emissions
- Enhanced Operational Standards
 - Pilot flame presence
 - Flare tip velocity
 - Combustion zone net heating value NHVcz ≥270 BTU/scf
 - Combustion zone net Dilution parameter NHVdil ≥22 BTU/ft²

Research I : Combustion Mechanism & CFD Simulation of Flares

Research II: Dynamic Simulation for Flare Minimization

	startup time (hrs)	amount of flared raw materials (Klbs)				major emissions ^a (Klbs)			
		C1	C2	C3	C4+	CO ₂	СО	NO_{x}	HRVOCs
historical best startup ^b (base case) design 1 design 2	25 14 14	2163 905 906	5569 2242 2241	3017 1068 1063	2782 1088 841	22 198 8995 8803	106.1 43.1 41.2	19.5 7.9 7.6	183.6 75.1 70.9
emission reduction of design 1 compared with the base case (%)	44.0	58.2	59.7	64.6	60.9	59.5	59.4	59.3	59.1
emission reduction of design 2 compared with the base case (%)	44.0	58.1	59.8	64.8	69.8	60.3	61.2	61.1	61.4

Xu, et al. "Chemical Plant Flare Minimization via Plant-Wide Dynamic Simulation", I&EC, 2009

Challenges in Flare Operation

- Vent gas changes rapidly and widely along operation
- Flaring process is non-linear at different operating conditions
- Large and varying time delays (e.g., gas chromatography)

Research III: Predictive Flare Control

- Predict flaring performance under different scenarios
- Optimize the operating parameters (steam/air injection and supplement fuel gas)
 - Meet compliance of CE/DRE and opacity
 - Save money

Variables in Flare Operation

Measured variables

- Vent gas flow rate (Qvg)
- Exit velocity (V)
- Vent gas net heating value (NHVvg)
- Carbon number (CN)
- Vent gas carbon to hydrogen molar ratio (CHR)
- MW

Controlled variables

- Assisted steam/air flow rate
- Make-up fuel flow rate (F)

Performance variables

- DRE/CE
- Opacity
- Combustion zone net Heating Value (NHV_{CZ})
- Net Heating Value dilution parameter (NHVdil)

Design variables

- Flare tip diameter (D)
- Other design specification

Disturbance variable

• Weather

Current Practice - Opacity and NHVvg Control

Data Sources

- Totally 262 data sets for steam-assist flares and 90 for air-assist flares.
- 1983/1984 EPA, 2010 TCEQ/John Zink, 2009/2010 Marathon TX City/Detroit, and 2014 Carleton University flare test data.
- Only those flare tests with both soot and DRE/CE data were used in modeling
- CE data were corrected for soot emissions

Artificial Neural Network Models

Random Forrest Algorithm

CE and Opacity Prediction

Optimized NHVcz vs. Historical Operational Data

College of Engineering LAMAR UNIVERSITY

Optimized Opacity vs. Historical Data

Optimized Assisted Steam Flow Rate vs. Historical Data

Data-Drive Models for Flare Gas Prediction

Conclusion

Big data analysis and artificial intelligence

- Bring new insights to the process
- Enhance the profit and reduce emissions

Acknowledgement

- US EPA Region 6
- Texas Commission of Environmental Quality (TCEQ)
- Texas Air Research Center (TARC)
- The State of Texas Air Quality Research Program (AQRP)
- Houston Advanced Research Center (HARC)
- BASF TOTAL Petrochemicals LLC.
- LyondellBasell
- Huntsman
- Lamar University
- Collaborators:
 - Prof. Kuyen Li, Qiang Xu, Thomas C. Ho, Peyton Richmond (Lamar University)
 - Prof. Matthew Johnson (Carleton University)
 - Dr. Yousheng Zeng (Providence Engineering)

