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Flares
* Asafety device to remove potentially explosive vapor clouds from the facility

* Originally not used as environmental control devices
* Flaring

* Lost raw material

* Lost product

* Lostfuel gas

* Lost $$$

* Emissions:
* Unburned hydrocarbons, CO, VOCs

. Soot

* Nox, SO, ...




Refinery Sector Rule (RSR) - MACT CC and UUU

e Compliance Date: January 30, 2019

* Performance Indicators
e Destruction Efficiency/Combustion Efficiency (DRE/CE): 98%/96.5%
* No visible emissions

* Enhanced Operational Standards

* Pilot flame presence

« Flare tip velocity

« Combustion zone net heating value NHVcz 2270 BTU/scf

« Combustion zone net Dilution parameter NHVdil 222 BTU/ft?
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Research | : Combustion Mechanism & CFD Simulation of Flares
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Research |I: Dynamic Simulation for Flare Minimization
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startup time amount of flared raw materials (Klbs) major emissions® (Klbs)
(hrs) Cl C2 C3 Cd+ COy CcO NOy HRVOCs

historical best startup” (base case) 25 2163 5569 3017 2782 22 198 106.1 19.5 183.6

design 1 14 905 2242 1068 1088 8995 43.1 7.9 75.1

design 2 14 906 2241 1063 841 8803 41.2 7.6 70.9

emission reduction of design | 44.0 58.2 59.7 64.6 60.9 59.5 594 59.3 59.1

compared with the base case (%)
emission reduction of design 2 44.0 58.1 59.8 64.8 69.8 60.3 61.2 61.1 61.4

compared with the base case (%)

Xu, et al. “Chemical Plant Flare Minimization via Plant-Wide Dynamic Simulation”, I&EC, 2009
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Challenges in Flare Operation

* Vent gas changes rapidly and widely along operation
* Flaring process is non-linear at different operating conditions

e Large and varying time delays (e.g., gas chromatography)
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Research lll: Predictive Flare Control

* Predict flaring performance under different scenarios

 Optimize the operating parameters (steam/air injection
and supplement fuel gas)

 Meet compliance of CE/DRE and opacity
« Save money
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Business

Matrix Models Evaluation Value
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Variables in Flare Operation

Measured variables Performance variables

® Vent gas flow rate (Qvg) ® DRE/CE

® Exit velocity (V) ® Opacity

o .

. \ée”;gas ”etbheat(':nNg altiesblN Vo) ® Combustion zone net Heating Value (NHV,)
arbon number . L :

. (CN) _ ® Net Heating Value dilution parameter (NHVdil)

Vent gas carbon to hydrogen molar ratio (CHR) _ _
o Design variables

MW o
® Flare tip diameter (D)

Eoiiiglled vaRauias ® Other design specification

® Assisted steam/air flow rate

® Make-up fuel flow rate (F : .
P (F) Disturbance variable

® Weather
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Current Practice - Opacity and NHVvg Control

Opacity Control
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http://www.cybosoft.com/ats/ats_50.htm
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Data Sources

* Totally 262 data sets for steam-assist flares and 90 for air-assist flares.

e 1983/1984 EPA, 2010 TCEQ/John Zink, 2009/2010 Marathon TX
City/Detroit, and 2014 Carleton University flare test data.

* Only those flare tests with both soot and DRE/CE data were used In
modeling

* CE data were corrected for soot emissions
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Artificial Neural Network Models

Hidden
Input Hidden Layer OQutput Layer
Output

Input

Tansig function

v Algonthms

a = tansig(n) = 2/ (l+exp(-2*n))-1

input
output
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Random Forrest Algorithm

M features

Take the

> majority
vote

N examples
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CE and Opacity Prediction
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Optimized NHVcz vs. Historical Operational Data

350 mm NHVez (Experiment) mmm NHVcz(Model) = NHVcz(270)
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Optimized Opacity vs. Historical Data
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Optimized Assisted Steam Flow Rate vs. Historical Data

Assisted Steam (Ib/MMbtu)
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Net cost saving:

Avg — 38.5%
Min — 16.0%
Max — 74.6%
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Data-Drive Models for Flare Gas Prediction

DS Result vs RF Model Prediction
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Conclusion

Big data analysis and artificial intelligence
* Bring new insights to the process
 Enhance the profit and reduce emissions
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